

Institute of Automation and Information Technology Department "Robotics and Engineering Tools of Automation"

EDUCATIONAL PROGRAM 7M07107 Robotics and Mechatronics

Code and classification of the field of education: 7M07 Engineering, manufacturing and construction industries Code and classification of training directions: 7M071 Engineering and engineering trades Group of educational programs: M102 Robotics and mechatronics Level based on NQF: 7 Level based on IQF: 7 Study period: 2 year Amount of credits: 120

Almaty 2023

Educational program <u>7M07107 Robotics and Mechatronics</u> was approved at the meeting of K.I. Satbayev KazNRTU Academic Council

Minutes #3 dated 27.10.2022

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council

Minutes #2 dated 21.10.2022

Educational program <u>7M07107 Robotics and Mechatronics</u> was developed by Academic committee based on direction 7M071 Engineering and engineering trades

Full name	Academic degree/ academic title	Position	Workplace	Signature
Chairperson of	Academic Committe	e:		_ A
Baktybaev Murat Kyrgyzbaevich	Candidate of Physical and Mathematical Sciences	States of the second	Department of «Robotics and Engineering Tools of Automation», K.I. Satbayev KazNRTU	Jun
Teaching staff:				
Ozhikenov Kassymbek Adılbekovich	Candidate of Technical Sciences	Professor, Head of the Department	Department of «Robotics and Engineering Tools of Automation», K.I. Satbayev KazNRTU	An Pecny Grund Charles
Employers:		<i>V</i>	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Medica Ale
Dzhumagulov Arystanbek Kuyzembaevich	-	General Director	LLP «MEDREMZAVOD Med HOLDING»	CARTER TO AND
Akzhanov Janat Koishibaevich	-	Director	LLP «SAIMAN Corporation»	RETCTBENHOCTHIO
Students			12.0	Sand Sand
Shylmyrza Usen Jumanuly	-	1st year Master's student	Department of «Robotius and Engineering Tools of Automation», K.I. Satbayev KazNRTU	A Contraction

Table of contents

List of abbreviations and designations

1. Description of educational program

2. Purpose and objectives of educational program

3. Requirements for the evaluation of educational program learning outcomes

4. Passport of educational program

4.1. General information

4.2. Relationship between the achievability of the formed learning outcomes according to educational program and academic disciplines

5. Curriculum of educational program

6. Additional educational programs (Minor)

List of abbreviations and designations

EP - Educational program

BD - basic disciplines

PD - profile disciplines

ECTS - European Credit Transfer and Accumulation System

USEC - Universal, social and ethical competencies

S&MC - Special and managerial competencies

PC - Professional competence

EO - educational outcomes

FA - Final attestation

1. Description of educational program

Master's degree in the field of training "Robotics and mechatronics" should be prepared to solve professional tasks in accordance with the profile of the master's program and the types of professional activities:

research activities:

- analysis of scientific and technical information, domestic and foreign experience in the development and research of robotic and mechatronic systems; study of new methods of control theory, artificial intelligence technologies and other scientific areas that make up the theoretical base of robotics and mechatronics, preparation and publication of reviews and abstracts;

- conducting theoretical and experimental research in the field of developing new samples and improving existing robotic and mechatronic systems, their modules and subsystems, searching for new ways of managing and processing information using artificial intelligence, fuzzy logic, multi-agent control methods, artificial neural and neuro-fuzzy networks;

- conducting patent research supporting the development of new robotic and mechatronic systems in order to protect intellectual property objects, research and development results obtained;

- conducting the development of experimental samples of robotic and mechatronic systems, their modules and subsystems in order to verify and substantiate the main theoretical and technical solutions to be included in the terms of reference for the performance of development work;

- organizing and conducting experiments on existing robotic and mechatronic systems, their subsystems and individual modules in order to determine their effectiveness and determine ways to improve, processing the results of experimental studies using modern information technologies;

- preparation of reports, scientific publications and reports at scientific conferences and seminars, participation in the implementation of research and development results in practice;

design and development activities:

- preparation of a feasibility study of projects for new robotic and mechatronic systems, their individual subsystems and modules;

- calculation and research of robotic and mechatronic systems, control, information-sensory and Executive subsystems using mathematical modeling methods, layout and testing of existing systems, processing of experimental data with the use of modern information technologies;

- development of special software for solving problems of designing robotic and mechatronic systems, development of technical specifications and direct participation in the design of mechanical, mechatronic and robotic modules, design of mechatronic and robotic devices, control and information processing systems;

organizational and managerial activities:

- development of organizational and technical documentation (work schedules, instructions, plans, estimates) and established reporting in accordance with approved forms;

- organization of work of small groups of performers involved in research, design and experimental research;

- monitoring the implementation of measures to prevent industrial injuries, occupational diseases, and prevent environmental violations during the research and operation of robotic and mechatronic systems;

installation and commissioning activities:

- participation in verification, adjustment, adjustment, equipment condition assessment and configuration of robotic and mechatronic systems for various purposes, including both technical means and software control systems;

- participation in the interfacing of software and hardware complexes with technical objects as part of robotic and mechatronic systems, in conducting tests and commissioning prototypes of such systems;

service and maintenance activities:

- participation in the verification, adjustment, adjustment and evaluation of the state of robotic and mechatronic systems for various purposes, as well as their individual subsystems, in the setting up of control hardware and software complexes;

- preventive maintenance of technical condition and functional diagnostics of robotic and mechatronic systems for various purposes, as well as their individual subsystems;

- preparation of operating instructions for robotic and mechatronic systems and their hardware and software, development of routine testing programs;

- preparation of applications for equipment and components, preparation of technical documentation for equipment repair;

scientific and pedagogical activity:

- participation in the development of programs of academic disciplines and courses based on the study of pedagogical, scientific, technical and scientificmethodical literature, as well as the results of their own professional activities;

- participation in setting up and modernizing individual laboratory works and workshops in professional disciplines;

- conducting training sessions with students, participating in the organization and management of their practical and research work;

- application and development of new educational technologies, including computer and distance learning systems.

The term of study in the master's program is determined by the volume of academic credits mastered. When the established amount of academic credits is mastered and the expected learning outcomes for obtaining a master's degree are achieved, the master's degree program is considered fully mastered. In the scientific and pedagogical master's program, at least 120 academic credits are awarded for the entire period of study, including all types of educational and scientific activities of the master's student.

Planning of the content of education, the way of organizing and conducting the educational process is carried out by the University and scientific organization independently on the basis of credit technology of training.

The master's program in scientific and pedagogical direction implements educational programs of postgraduate education for the training of scientific and scientific and pedagogical personnel for Universities and scientific organizations with in-depth scientific and pedagogical and research training.

The content of the master's degree EP consists of:

1) theoretical training, including the study of cycles of basic and profile disciplines;

2) practical training of undergraduates: various types of internships, scientific or professional internships;

3) research work, including the execution of a master's thesis - - for the scientific and pedagogical master's program

4) final certification.

Final certification is carried out in the form of writing and defending a master's thesis.

2. Purpose and objectives of educational program

Purpose of EP: The purpose of the educational program is to train highly qualified, competitive and in-demand specialists in the field of robotics and mechatronics in the labor market, capable of performing design, production, technical, organizational work in professional activities

Tasks of EP: - development of students through research activities, critical thinking, development of professionally oriented skills and abilities;

- using highly professional training of undergraduates in various educational environments;

- training a new competitive generation of technical specialists for the labor market;

- developing an environment that supports people of different cultures, and creating an atmosphere of striving for knowledge, academic integration and intellectual motivation;

- conducting research and educational activities based on the world's best practices, developing their own methods and style of training specialists;

- development of cooperation "University-industry" to meet the requirements of the labor market for technical specialists, to improve the quality of educational programs for training specialists;

- development of additional educational and training programs using multimedia, new teaching technologies for organizing learning based on the principle of lifelong learning;

- establishing partnerships with other universities and organizations to improve the quality of education, to support technical and cultural ties.

	Competencies for completing training								
	Universal, social and ethical competencies (USEC)								
U-1	Ability to communicate orally and in writing in the state, Russian and foreign languages to								
	solve problems of interpersonal and intercultural interaction								
U-2	The ability to assess the surrounding reality based on worldview positions formed by								
	knowledge of the basics of philosophy, which provide scientific understanding and study of								
	the natural and social world by methods of scientific and philosophical knowledge								
U-3	Develop an environment that welcomes and supports people from different cultures, and								
	create an atmosphere of striving for knowledge, academic integration, and intellectual								
	motivation								
U-4	Have the skills of social design and methods of forming and maintaining the socio-								
	psychological climate in the organization								
U-5	Ability to critically use the methods of modern science in practice								
U-6	U-6 Awareness of the need and ability to learn and improve their skills independently throughout								
	their working life								
	Special and managerial competencies (S&MC)								

S-1	Independently manage and control the processes of work and training activities within the
	framework of the strategy, policy and goals of the organization, discuss problems, argue
	conclusions and correctly operate with information
S-2	Organize the activities of the production team, make organizational and managerial decisions
	in the context of different opinions and evaluate the consequences of decisions
S-3	Organize work in the division to improve, modernize, and unify the manufactured robotic
	and mechatronic systems
S-4	Readiness to lead and participate in the preparation of a feasibility study of projects for the
	creation of robotic and mechatronic systems, their subsystems and individual modules
S-5	Ability to critically analyze, present, defend, discuss and disseminate the results of their
	professional activities
	Professional competencies (PC)
PC-1	The ability to analyze literature data and, based on the analysis, be able to determine and
	experimentally implement possible ways to improve the quality of robotic systems
PC-2	Ability to conduct professional written and oral communication with all stakeholders in the
	field of robotics and mechatronics
PC-3	The ability to demonstrate a sustained interest in self-study and training of both wards and
	colleagues, to guide and advise them throughout the entire period of professional activity
PC-4	Ability to demonstrate a high level of professional activity while solving industrial and / or
	scientific tasks, observing all the principles of legal and ethical standards
PC-5	Ability to conduct independent research in the field of robotics and mechatronics and
	modernize existing robotic and mechatronic systems, introduce new methods of digital signal
	processing with elements of artificial intelligence
PC-6	Ability to design modern and reliable blocks and devices, intelligently controlled Executive,
	information-sensor and navigation modules of robotic and mechatronic systems
PC-7	Ability to apply modern software products and the latest technologies to solve and manage
	interdisciplinary engineering problems in various fields of science and technology
PC-8	Ability to create adaptive and robust control systems for multi-agent robotic systems and
	special-purpose object systems in an unknown environment, taking into account their
	dynamic characteristics
PC-9	Ability to implement scientific results in the production of robotic and mechatronic systems,
	their subsystems and individual modules

3. Requirements for evaluating the educational program learning outcomes

EO1 - Demonstrate knowledge of the branches of higher mathematics, physics and other natural sciences and apply them to solve problems that have arisen in the course of professional activity.

EO2 – Apply modern software products and the latest technologies to solve and manage interdisciplinary engineering problems in various fields of science and technology.

EO3 – Research in the field of development of new samples and improvement of existing mechatronic and robotic systems, search for new ways of information management and processing.

EO4 – Collect and analyze scientific and technical information, taking into account current trends in the development and use of achievements of science, technology and technology in professional activities.

EO5 – To determine the safety, environmental friendliness and economic efficiency of the implementation of the projected robotic and mechatronic systems, their individual modules and subsystems.

EO6 – Calculate and design individual blocks and devices of robotic and mechatronic systems, intelligent control, information-sensor and executive subsystems and mechatronic modules, in accordance with the terms of reference.

EO7 – Plan tests of modules and subsystems of robotic and mechatronic systems, organize and conduct experiments on existing objects and experimental models, processing the results of experimental research, using modern information technologies.

4. Passport of educational program

4.1. General information

N⁰	Field name	Comments
1	Code and classification of the field	7M07 Manufacturing and processing industries
	of education	
2	Code and classification of training	7M071 Engineering and engineering trades
	directions	
3	Educational program group	M102 Robotics and mechatronics
	Educational program name	7M07107 Robotics and Mechatronics
5	Short description of educational	Training of highly qualified specialists in the field of
	program	development of new control methods, information
		processing and search for new design solutions for
		mechatronic and robotic systems of general purpose,
		their subsystems and individual modules, conducting
		research in the field of mechatronics, robotics, control
		theory and artificial intelligence methods.
6	Purpose of EP	The purpose of the educational program is to provide
		high-quality training of highly qualified specialists in
		the field of robotics and mechatronics, ready to solve
		scientific, pedagogical and production tasks of
7	True of ED	professional activity in modern conditions
7	Type of EP	New 7
	The level based on NQF The level based on IQF	7 7
	Distinctive features of EP	1
		In the field of research methodology; in the field of
	_	scientific and scientific-pedagogical activity in higher
	program	educational institutions; in matters of modern
		educational technologies; in the implementation of
		scientific projects and research in the professional field;
		in the field of information analysis.
12	Learning outcomes of educational	
	program	
13	Education form	full-time
	Period of training	2 year
	Amount of credits	120
	Languages of instruction	russian, kazakh
	Academic degree awarded	Master of Technical Sciences/Master of Engineering
	÷	and Technology in the educational program «7M07107
		Robotics and Mechatronics»
18	Developer(s) and authors	Ozhikenov K.A.,
	-	Tasbolatova L.T.

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

N	2 Discipline name	Short description of discipline	Amount of			(codes)	comes			
	-		credits	EO1	EO2	EO3	EO4	EO5	EO6 EO7			
		Cycle of basic disciplines	basic disciplines									
	1	University component		1				r				
1.	Foreign language (professional)	The course is designed for undergraduates of technical specialties to improve and develop foreign language communication skills in professional and academic fields. The course introduces students to the general principles of professional and academic intercultural oral and written communication using modern pedagogical technologies.	5			v						
2.	Psychology of management	sychology of The discipline studies the modern role and content of psychological aspects in managerial										
3.	History and philosophy of science	The subject of philosophy of science, dynamics of science, specifics of science, science and pre-science, antiquity and the formation of theoretical science, the main stages of the historical development of science, features of classical science, non-classical and post-non-classical science, philosophy of mathematics, physics, engineering and technology, specifics of engineering sciences, ethics of science, social and moral responsibility of a scientist and engineer.	3			v						
4.	Higher school pedagogy	Undergraduates will master the methodological and theoretical foundations of higher school pedagogy, plan and organize the processes of teaching and upbringing, master the communicative technologies of subject-subject interaction between a teacher and a master in the educational process of a university.	3		v							
		Cycle of basic disciplines										
	1	Component of choice										
5.	The dynamics of robots	The purpose of teaching the discipline "The dynamics of robots" is to study the basics of building kinematic and dynamic models of robots and motion control tasks, methods of constructing program trajectories of motion. The study of kinematics and dynamic properties of various actuators and the use of this information to obtain as simple and economical control as possible. The task of the dynamics of robot control, inextricably linked with the planning of the trajectory of its movement	5	v		v						
6.	Intelligent control and information processing systems	The discipline is aimed at studying the theoretical foundations and practical mastering of working with neural networks, genetic algorithms and expert systems. Formation of practical skills in the use of intelligent systems for management. Understanding the place of intelligent methods among all information technologies. The concept of basic intelligent technologies, their use in computer control systems and application for solving applied	5				v	v				

	[11							
_		problems							
	Theory of Inventive	The purpose of studying the discipline is to master the theoretical foundations of solving							
7	Problem Solving in	inventive tasks. Basic knowledge in the field of solving inventive tasks, as well as skills in	5						
/.	Instrument Making	working with normative documents of invention will be presented. After studying the	5			v	v		
		course, a master's student must demonstrate the ability to analyze, synthesize and design							
		solutions to inventive tasks, as well as assess their significance for society.							
		The purpose of studying the discipline is to master the basics of practical application of							
		methods of technical creativity in innovation. The basic knowledge and skills of applying the	~						
8.	innovative activities	methods of technical creativity in innovation are offered. After studying the course, a	5			v			
		master's student must demonstrate the ability to analyze, synthesize and design methods of							
_		technical creativity in innovation.							
		The purpose of studying the discipline is to study the principles of modeling the movement							
		of multi-link systems, which are the majority of mechatronic systems that are multi-link,							
9.	of multi-tier systems	such as manipulators of industrial robots, etc., at the design stage. The study of the main	5			v		v	
		elements of the SimMechanics library and the principles of forming models of spatial							
		mechanisms and machines in the SimMechanics environment, visualization of the							
_		movements of spatial mechanisms and machines using the built-in SimMechanics tools.							
	Biotechnical control	The objectives of the development of the discipline: the formation of knowledge, skills,							
10	systems	abilities and competences on the management systems of biotechnical systems; forming a	5	v	v				
		belief about the need for the development of automatic biotechnical systems for human life							
_		support; use of information tools necessary for future professional activities Cycle of profile disciplines							
		University component							
	Intelligent control	The purpose of the discipline is to study the theoretical foundations of artificial intelligence,							
	technology	neural network technologies of intelligent systems, technologies for building control systems							
		with fuzzy logic, rules of fuzzy logic, technologies for creating a knowledge base, expert	_						
11		control systems, adaptive control systems, problems of theory and technology of intelligent	5			v	v	v	
		systems, etc. This knowledge is necessary for further understanding of the principles of							
		building robotic systems.							
		Cycle of profile disciplines		11					
		Component of choice							
	Control of mobile robots in	The purpose of teaching the discipline is to form masters' knowledge about automatic and							
	an unknown environment	automated control of mobile robots, methods and methods of designing, debugging and							
		operating mobile robots using computer-aided design and production systems, taking into							
12		account unknown, random, non-deterministic influences. The issues of mathematical	5		v	v			
		description of static and dynamic objects, development and design of mechanical and							
		electrical components of robotic and mechatronic systems with their subsequent automated							
		control are considered.							
		The discipline "Intellectual management in conditions of uncertainty" is aimed at studying							
13		the problems of managing continuous dynamic objects under uncertainty. The tools of	5		v	v			
		sensitivity theory, interval model representations, generalized modal control, Lyapunov							

				 1					
		function method and adaptive control are studied. Designing control laws that deliver							
		robustness to systems in the sense of the main indicators of the quality of their functioning.							
		Non-adaptive and adaptive management methods.							
		The purpose of the discipline is to study the types, purpose, general principles of operation							
		of robot navigation systems, as well as the mathematical apparatus of modern navigation. To							
1.		teach to understand the purpose of robot navigation systems and to apply modern robot	F						
14		navigation systems and tools. Inertial orientation and navigation system (IONS) for	5		v	v			
		manipulative and mobile robots. Structure and purpose and sleep. Orientation and navigation							
		algorithms for determining the kinematic parameters of a moving object using IONS.							
		The purpose of studying the discipline is the formation of students' knowledge in the field of							
		information and measurement systems: components, algorithms, structures, characteristics,							
	systems	varieties and purposes of modern information and measurement systems and their parts;							
15	-	features of the use of computers and computer technology in information and measurement	5		v				
		systems; organization of human interaction and technology in information and measurement							
		systems; metrological providing systems; sources, types and performance indicators of							
		information and measurement systems							
	Multi-agent robotic	The purpose of studying the discipline is the study of multi-agent systems, which are one of							
	systems	the new promising areas of artificial intelligence, which was formed on the basis of research							
		results in the field of distributed computer systems, network technologies for solving	_						
16		problems in parallel computing, in which the principle of autonomy of individual parts of the	5		v	v			
		program, jointly functioning in a distributed system, where many interconnected computing							
		processes are simultaneously taking place programs called multiagents.							
-		The purpose of studying the discipline is to study methods for assessing the reliability of							
	technical systems and	technical systems at the design stage, to study methods for assessing the reliability of							
	devices	technical systems in operation, to apply probability theory to predict and prevent equipment							
17		failures, to study methods for diagnosing existing equipment. Accordingly, the teaching of	5						v
1		the discipline "Diagnostics and reliability of technical systems and devices" is aimed at	5						•
		arming future specialists with knowledge of the basic provisions of the theory of reliability							
		and survivability of technical systems.							
		The discipline is aimed at studying methods for assessing the reliability of technical systems							
		at the design stage, studying methods for assessing the reliability of technical systems in							
	technical systems	operation, applying probability theory to predict and prevent equipment failures. The basic							
18	leenneur systems	concepts of reliability theory, such as the quality and reliability of the object, the causes and	5						v
		types of failures. Methods for assessing the reliability of recoverable systems without							
		limitation and with a limited recovery time							
\vdash	Digital processing of	The purpose of the discipline is to study the role and significance of digital signal processing					\rightarrow	-+	
		in the reception and transmission of information, the features and advantages of digital							
19		representation of signals, the study of digital transformation algorithms, the implementation	5			v			
13		of digital processing in telecommunications, information-measuring and radiophysical	5		v	v			
		systems and its application in various fields of science, technology and production.							
		systems and its appreation in various netus of science, technology and production.							

control	The purpose of studying the discipline is to familiarize with the principles and methods of building systems of neural fuzzy and hybrid control of a technical object based on the methods of the theory of artificial intelligence and modern software and hardware. Study of the structure, characteristics and functionality of the NeuralNetworksToolbox module of the MatLab software package for modeling neural networks; study of the structure, characteristics and functionality of the FuzzyLogicToolbox module of the MatLab software package for modeling fuzzy and hybrid control systems The purpose of teaching the discipline is to systematize and integrate previously acquired	5			v		v	
robotic systems	knowledge in the disciplines of bachelor's and master's training in the field of study. Definition and formalization of tasks facing robotics; drawing up requirements for components of robotic systems; the concept of problems of designing highly efficient mechatronic modules and systems of special-purpose objects; obtaining methodological foundations of system design of multicomponent integrated systems, taking into account the specifics of automated production.	5				v		
and microcontroller 22 ^{systems}	The discipline is aimed at forming students' knowledge of the general methodology and specific design methods of the main varieties of modern microprocessor tools, as well as knowledge and skills in the field of architecture, principles of functioning and programming of microprocessor systems. Studies the architecture and functionality of modern microprocessors and microcontrollers; methods and technical means of debugging, diagnostics, modeling and design of microprocessor systems and microcontrollers	5				v		
Organization and planning of production of mechatronic equipment 23	The purpose of studying the discipline is to study the methods of planning and production of medical equipment and the principles of the organization of the production process in the production of medical equipment. Scientific foundations of the organization of the production of medical equipment. Organization of auxiliary workshops and service farms of the enterprise for the production of medical equipment production. Organization of research, design and technological preparation of medical equipment production. Organization and planning of management of the enterprise for the production of medical equipment. Organization of medical equipment. Organization of medical equipment production.	5	v					v
Information topologies and networks 24	The purpose of studying the discipline is to provide undergraduates with systematized knowledge about information topologies and networks in computer control systems of robotic systems. Formation of in-depth knowledge in the field of modern information and communication technologies, information culture. Mastering the skills of designing and practical implementation of various automated control systems for robotic systems.	5				v		
25	The purpose of studying the discipline is to develop undergraduates' skills in solving applied problems using deep neural networks. The course is dedicated to the methods of "deep learning" - a new generation of neural network methods of machine learning, which caused rapid development in a number of applied areas. Over the past few years, deep learning methods have become firmly entrenched in the applied fields of computer vision: visual image recognition, segmentation, color restoration using images, image description with tags, text processing, speech processing.	5		v	v v		v	

Γ	adaptive control	characteristics of adaptive, robust and robust-suboptimal control systems for single-					
		connected, multi-connected and network linear and nonlinear objects. To study mathematical					
		methods used in the synthesis of adaptive and robust control systems for dynamic objects.					
		To teach how to use the studied methods to solve specific adaptation problems in stochastic					
		dynamical systems					
	Project Management	The discipline studies the components of project management based on modern behavioral					
		models of project-oriented business development management. The program is based on the					
2	7	international standards PMI PMBOK, IPMA ICB and the standards of the Republic of	5		v		
2		Kazakhstan in the field of project management. The features of organizational management	5		v		
		of business development through the interaction of strategic, project and operational					
		management are studied.					
	Reliability of technical	The purpose of teaching the discipline is to study a wide range of issues: basic concepts and					
	systems	definitions of the theory of reliability of technical systems. Quantitative and qualitative					
29	2	characteristics of reliability. Mathematical models of reliability of devices and systems.					
20	3	Methods and main stages of determining the reliability indicators of the designed devices					
		and systems. Improving reliability by redundancy. Calculation of reliability of devices and					
		systems with information redundancy and temporary redundancy					

5. Curriculum of educational program KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATPAYEV

APPROVED

Chairman of the Management Board-Rector of Kazntu named after K.Satpayev ______ M.M. Begentaev «_____ 2023 y.

CURRICULUM

June Educational Program on enrollment for 2023-2024 academic year Educational program 7M07107 - Robotics and mechatronics Group of educational programs M102 - "Robotics and mechatronics"

	Form of study: full-time	E	uration of	f study:	2 year	Academ	ic degree	: Master of			
			Total	Tota	Classroo	SIS	Form		<u>tion of face</u> urse	-to-face tra	ining based on courses and semesters 2 course
Discipline code	Name of disciplines	Cycle	amoun t in credits	l hour s	m amount lec/lab/pr	(includin g TSIS) in hours	of contro l	1 semeste r	2 semeste r	3 semeste r	4 semester
			М	-1. Modu	ule of basic ti	aining (univ	ersity con	nponent)			
LNG210	Foreign language (professional)	BD UC	5	150	0/0/3	105	Е	5			
HUM214	Management Psychology	BD UC	3	90	1/0/1	60	Е		3		
HUM212	History and philosophy of science	BD UC	3	90	1/0/1	60	Е		3		
HUM213	Higher school pedagogy	BD UC	3	90	1/0/1	60	Е	3			
	÷	•	•		compo	nent of choi	ce	•	•		
ROB256	Robot dynamics				2/0/1						
ROB204	Intelligent information management and processing systems	BD CCH	5	150	2/1/0	105	Э	5			
ROB263	Theory of inventive problem solving in instrument engineering	BD	5	150	2/0/1	105	Э	5			
ROB262	Application of methods of technical creativity in innovation	ССН	5	150	2/0/1	105		5			
ROB275	Mathematical modeling and optimization of the	BD CCH	5	150	2/0/1	105	Э		5		

	movement of multi-link	I	1	1	I	1	1	I	1		1
	systems										
ROB257	Biotechnical control systems										
		M-2	. Module o	of theore	tical foundat	tions of man	agement (optional co	omponent)		
ROB284	Intelligent control technology	PD UC	5	150	2/0/1	105	Э	5			
ROB555	Managing mobile robots in an unknown environment	PD	5	150	2/0/1	105	Э		5		
ROB203	Intelligent management in conditions of uncertainty	OC	5	150	2/0/1	105	3		5		
ROB283	Robot navigation systems										
ROB224	Technical means of information and measuring systems	PD OC	5	150	2/0/1	105	Э			5	
MNG705	Project management										
			M-3	. Contro	l system desi	gn module (optional c	omponent)		
		1	1	1		1	1	1	1		
ROB265	Multi-agent robotic systems	PD	-	150	0/0/1	105	D	~			
ROB231	Reliability of technical systems	OC	5	150	2/0/1	105	Э	5			
ROB277	Diagnostics and reliability of technical systems and devices	PD									
ROB216	Assessment of reliability and survivability of technical systems	OC	5	150	2/0/1	105	Э		5		
ROB279	Digital processing of measurement information	PD	5	150	2/0/1	105	Э			5	
ROB285	Neuro fuzzy and hybrid control	OC	5	150	2/0/1	105	9			5	
ROB281	Design of special purpose robotic systems	PD	5	150	2/0/1	105	Э			5	
ROB239	Design of microprocessor and microcontroller systems	OC	5	150	2/1/0	105	5			C	
ROB280	Organization and planning of mechatronic equipment production	PD OC	5	150	2/0/1	105	Э			5	
ROB288	Information topologies and networks	00									
ROB274	Deep learning of robots	PD									
ROB286	Robust systems and adaptive control	OC	5	150	2/0/1	105	Э			5	
					M-4. Practi	ce-oriented	module				
AAP229	Pedagogical practice	BD UC	6						6		

1 1 1 2 (0		PD	0			1	l				
AAP269	Research practice	UC	8								8
				Μ	-5. Experim	ental researc	<u>h module</u>				
AAP251	Research work of a master's student, including internship and completion of a master's thesis	RWM S UC	2					2			
AAP241	Research work of a master's student, including internship and completion of a master's thesis	RWM S UC	3						3		
AAP254	Research work of a master's student, including internship and completion of a master's thesis	RWM S UC	5							5	
AAP255	Research work of a master's student, including internship and completion of a master's thesis	RWM S UC	14								14
	1		-		M-6. Modul	e of final att	estation	-		1	
ECA212	Preparation and defense of a master's thesis	FA	8								8
	Total based on UNIVERSITY:							30	30	30	30
								6	0		60

	Number of credits for the entire period of study							
Carala anda	Cycles of disciplines	Credits						
Cycle code			un iv	co m po ne	T ot al			
BD	Cycle of basic disciplines		20	15	35			
PD	Cycle of profile disciplines				53			
	Total for theoretical training:	0	20	15	88			
	RWMS				24			
FA	Final attestation	8			8			
	TOTAL:	8	20	15	120			

Decision of the Academic Council of Kazntu named after K.Satpayev. Protocol № 3 27.10.2022 y.

Decision of the Educational and Methodological Council of Kazntu named after K.Satpayev. Protocol № 2 21.10.2022 y.

Decision of the Academic Council of the Institute Automation and Information Technology. Protocol № __ot "____" 20___y.

Vice-Rector for Academic Affairs

B.A. Zhautikov

Director of the Institute of Automation and Information Technology	 R.K. Uskenbayeva
Head of the Department of Robotics and Automation Equipment	 K.A. Ozhikenov
Specialty Council representative from employers	 A.K. Dzhumagulov

6. Additional educational programs (Minor)

Name of additional educational programs (Minor) with disciplines	Total number of credits	Recommended semesters of study	Documents on the results of mastering the additional educational programs (Minor)